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1. Introduction

In their groundbreaking paper, Diffie and Hellman[3] proposed the first public-
key operation, now known as the Diffie-Hellman key agreement protocol. Over
three decades later, this protocol remains crucially important, a component of a
great many cryptographic protocols.

In this paper we compare several models that capture the Diffie-Hellman pro-
tocol, with the aim of identifying a model that is both well-suited for automated
protocol analysis and that has a strong, well-justified link to the model typically
adopted in the computational complexity community. The core goal of any such
model is to express the concept of derivability: values that can be produced by
the model attacker. We start with the computational complexity view of a non-
uniform adversary, in which derivability is defined by what can be computed with
non-negligible probability by a polynomially bounded non-uniform family of cir-
cuits.

We make two changes to this model: we replace computability with a Dolev-
Yao style adversary, and we use non-standard analysis techniques to reduce the
parametrized asymptotic setting to a simpler, singular one. The use of non-standard
analysis helps justify our use of a hyperfinite field of exponents.

Unfortunately, the formal model that results is not usable for automated analysis.
First, as shown by Dougherty and Guttman[4], it is not a well-behaved message
algebra. Worse, any reasonable attempt at emulating this formal model with an
algebra would be problematic because the exponents would form a ring structure,
and unification, a key technique in automated exploratory protocol analysis, is not
known to be decidable for rings. Thus, we restrict our formal model to a weaker
one which does not capture exponent addition or group multiplication.

This would seem to be a problematic model: it seems to deny the adversary some
abilities that computability clearly includes, such as the ability to add exponents
and multiply bases. Thus, it is open for criticism on the basis that it captures
a smaller range of adversarial behavior than the previous model. We show that
while this smaller model is less expressive and thus can be used to describe a
smaller range of derivability statements, all derivability statements describable in
the smaller model that are true in the larger model are true in the smaller model.
In other words, the criticism is not well-justified: the only loss in using this smaller
model is in restricting the type of statements it can describe. And since this smaller
model is still capable of expressing the Diffie-Hellman protocol itself, it is of interest.

1.1. Our results. Figure 1 gives a diagram describing the various models we dis-
cuss in this paper. A is the purely computational model, discussed in Section 2.
In Section 3, we give an introduction to non-standard analysis. In Section 4, we
discuss the model B obtained by applying a non-standard analysis “limit” to the
computational model. In Section 5 we discuss the process of formalizing our mod-
els. C is obtained via a minimal and natural formalization of the computational
model, while D is obtained from C by applying a non-standard limit to C. How-
ever, D can also be constructed in a simpler way by a more radical formalization
of B. In Section 5 we prove one of our two main results: that these two models
are equivalent, so the simpler version of D may be regarded as the result of a min-
imal formalization of the computational model. In Sections 6 and 7 we prove the
main technical lemmas supporting this result. Finally, in Section 8 we discuss the
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Figure 1. Relationships among various Diffie-Hellman models
we discuss.

restriction of the resulting model to our Diffie-Hellman algebra and prove our other
main result: a conservative extension relationship between the restricted and full
Diffie-Hellman models.

2. Diffie-Hellman

The Diffie-Hellman protocol is described in a finite group G of prime order
Ord(G) = p, along with a generator g. It is believed that in such groups the
“discrete logarithm problem” of finding a random x given (G, g, gx) is hard. It is
further believed that if x and y are random, it is hard to find gxy given (G, g, gx, gy);
this is called the computational Diffie-Hellman problem.

The hardness of these computational problems is the basis of Diffie-Hellman
key exchange and many other cryptographic techniques. There are certain aspects
of the standard computational model in which statements of the tractibility or in-
tractibility of such problems are stated that need to be reviewed here. In particular,
it is important to state the computational hardness of such problems in a way that
seems realistic.

First of all, such statements are asymptotic ones. These problems may be solved
via brute force if the prime order p is small enough. Thus, any asymptotic definition
will necessarily include an infinite family of p, G, and g. However, one attractive
feature of discrete logarithm-based crytography is that no “trap-door” is thought to
exist making the discrete logarithm problem or the computational Diffie-Hellman
problem easy under a given set of parameters. Thus, the same parameters can be
used by everyone.

Second, hardness is meant to be as close as possible to impossibility, but we must
recognize that randomized algorithms will always be able to have a tiny chance of
success, for instance, by guessing the right answer at random. Thus, the standard
computational model concerns problems that can be solved with non-negligible
probability.

2.1. Preliminaries and notation. The expression Pr[v1 ← A1; . . . ; vn ← An :
P (v1, . . . , vn)] refers to the probability that P (v1, . . . , vn) holds given assignment
of each of v1 through vn based on probability distributions A1, . . . , An. When a
finite set is given in place of a probability distribution, the uniform distribution on
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that set is implied. When an algorithm is in place of a probability distribution, it
is implied that a run of that algorithm is performed, with uniform randomness if
the algorithm is randomized.

A rational expression with integer coefficients is an element of the field of quo-
tients of the polynomial ring Z[x1, . . . , xn]. We denote it by Z(x1, . . . , xn). A
monomial is an expression of the form M(x̄) = x̄ᾱ = xα1

1 · · ·xαn
n where n ∈ N and

αi ∈ Z. We associate to the monomial M the function (which by abuse of language
we also denote by M) ā 7→ aα1

1 · · · aαn
n defined whenever all ai 6= 0.

We use a bar to indicate a sequence of values. Thus, we may describe a particular
rational expression as R(x̄), which leaves ambiguous the value of n such that R ∈
Z(x1, . . . , xn). If R̄ is a sequence of rational expressions R̄ = R1, . . . , Rn, we can

use R̄(x̄) to refer to (R1(x̄), . . . , Rn(x̄)) and gR̄(x̄) to refer to (gR1(x̄), . . . , gRn(x̄)).
Let (R̄0, R̄1) be a pair of sequences of rational expressions each on the same

number of inputs. Whenever we have a space of base values B along with an
exponentiation operation B × Z → B, and a distinguished base g, we can define
R̄ : Zk → Bm × Zn by R̄(x̄) = (gR̄0(x̄), R̄1(x̄)). We call such a pair (R̄0, R̄1) an
information function.

Systems of exponent environments. Let G be a cyclic group of prime order
p. Since G is of prime order, every g ∈ G such that g 6= 1G is a generator for
G. In particular, exponentiation is a mapping G × Z → G. However, since gk

depends only on the equivalence class of k modulo p, we can view exponentiation
as a mapping G×Z/(p)→ G. We thus view the set of exponents as a field. Suppose
Gk is a sequence of such cyclic groups where each Gk is of prime order pk, such
that pk →∞. Assume that gk is a sequence of generators for each Gk.

Definition 2.1. A sequence S = {(Gk, gk, pk) : k ∈ N} is an admissible system of
exponentiation environments if Gk is a cyclic group of prime order pk, where gk is
a generator, and there are constants 0 < c ≤ C <∞ such that c 2k ≤ pk ≤ C 2k.

Remark 2.2. It is clear that the exponential growth assumption on pk is equivalent
to the inequality

(1) a log pk − b ≤ k ≤ A log pk −B

for some positive constants a, b, A,B.

In this paper we are concerned with whether certain values can be derived from
certain other values. We restrict to a class of such problems in which the information
provided and the values to be derived are both based on rational expressions in the
exponent.

Definition 2.3. Given an admissible system S of exponentiation environments,
a derivation problem for S is a pair of information functions ((ᾱ0, ᾱ1), (β̄0, β̄1)),
representing the problem of deriving R̄(β) from R̄(α).

Example 2.4. The discrete logarithm problem has α0(x) = x, β1(x) = x, and α1

and β0 empty sequences. Thus, ᾱ(x) = gx and β̄(x) = x.

Example 2.5. The computational Diffie-Hellman problem has α0(x1, x2) = (x1, x2)
and β0(x1, x2) = x1x2, and α1 and β1 both empty sequences. Thus, ᾱ(x1, x2) =
(gx1 , gx2) and β̄(x1, x2) = gx1x2 .
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2.2. Computational model of derivability. In order to define the computa-
tional view of when a derivation problem is solvable, we must introduce two con-
cepts: the notion of a polynomially bounded non-uniform randomized circuit family,
and the notion of a negligible function. Roughly, a circuit is a composition of a
finite number of NAND gates. The size of a circuit is the number of NAND gates.
Each circuit is the implementation of a unique function {0, 1}l → {0, 1}l′ . C denotes
the class of circuits.

A set {Ak|k ∈ N} of circuits is a non-uniform circuit family. Let NC be the set
of non-uniform circuit families.

A non-uniform circuit family {Ak} is polynomially bounded if there exists a
polynomial ρ(k) such that for all k, |Ak| ≤ ρ(k). Let PNC be the set of polynomially
bounded non-uniform circuit families.

We may think of circuits as randomized in the sense that some inputs may
be preserved for random bits. Computation by randomized polynomially-bounded
non-uniform circuit families is the most general standard notion for security of
discrete logarithm-based cryptographic schemes.[2] The non-uniform stipulation is
important to model security where parameters are reused as they often are for
Diffie-Hellman. This scenario is a bit more complex than the more typical case
of computation by a probabilistic polynomial-time Turing machine, because that
amounts to a uniform family of circuits rather than a non-uniform one.

Negligible functions. A function f : N −→ R is negligible if and only if for
every positive n there is a positive constant C such that |f(k)| ≤ Ck−n. This is
equivalent to the form preferred in the cryptography literature:

(2) ∀n ∈ N ∃k0 ∀k ≥ k0 |f(k)| ≤ k−n

Condition (2) clearly implies negligibility. Conversely, if f is negligible, for positive
n there is a C such that |f(k)| ≤ Ck−(n+1) for all k. Let k0 be such that Ck−1

0 ≤ 1.
Then |f(k)| ≤ k−n. Contrapositively, a function is f non-negligible if and only if
there are n and infinitely many k such that |f(k)| ≥ k−n.

It is essential to consider the non-uniform case to capture the assumption that
there do not exist trapdoors for the common parameters.

Definition 2.6. A derivation problem (ᾱ, β̄) is solvable if:

∃{Ak} ∈ PNC : Pr[x̄← (Z/(pk))n; v ← Ak(ᾱ(x̄)) : v = β(x̄)] is non-negligible.

This notion of solvable gives us a natural corresponding notion of “hard”: namely,
a derivability problem is hard if it is not solvable.

3. Review of Non-standard Analysis

Our reference for non-standard analysis is [1]. The main constituents of non-
standard analysis are a pair of universes 0 and ◦0 and an operator • : 0 −→ ◦0

called an enlargement operator. The transfer principle is the fact that the operator •

preserves the validity of first order formulas. Mathematical terms such as function,
cardinality, finiteness, field can be carried over to ◦0 and the enlargement operator
preserves their basic properties. We will refer to 0 as the standard universe and
◦0 as the non-standard universe. The transfer principle is stated as follows:
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0 ◦0

∈ ∈
⊆ ⊆⋃ ⋃
(·, ·) (·, ·)
P •P
card •card

0 ◦0

N •N
R •R∑ •∑∏ •∏
function function
finite •finite

Table 1. Translation Table for Relations, Operators and Predicates

3.1 (Transfer). If Φ(x1, . . . , xn) is a formula with bounded quantification whose free
variables are among x1, . . . , xn, then for a1, . . . , an ∈ 0, Φ(a1, . . . , an) is valid in 0

if and only if Φ(•a1, . . . ,
•an) is valid in ◦0.

By formula we mean first order formula with the predicate symbols “∈” and
“=” and some constants such as 1 and N. The restriction to bounded formulas is
not strictly necessary, but it allows us to assume that the model ◦0 interprets the
membership operator as ∈. The reference [1] follows this approach while [6] allows
for unrestricted quantifiers.

We could build a correspondence table between symbols in the standard universe
and symbols in the non-standard one. To each construct (predicate, operator,
relation) C in the standard universe corresponds a construct •C in the non-standard
universe. The table would look something like the table in Figure 1. The notations
that are used in practice differ from those in this list. For example, for the predicates
•finite, •integer, •real we use hyperfinite, hyperinteger, hyperreal respectively, A
partial mapping ϕ : ◦0 −→ ◦0 is internal if there is an f ∈ ◦0 satisfying the
function predicate such that ϕ(a) is defined if and only if a ∈ •domf and for such
values of a, ϕ(a) = f(a). Otherwise, the mapping is said to be external. A set
is internal (respectively external) if and only if its indicator function is internal
(respectively external).

Elements r of the field C of complex numbers are identified with •r. Thus
C is viewed as a subfield of •C. An element u ∈ ◦0 is standard if and only if
u = •x for some x ∈ 0. Thus •N and •R are standard sets even though they
have non-standard elements. We denote the formula “x is standard” by st(x). We
use the notation ∀stxΦ(x) and ∃stxΦ(x) which are abbreviations for the formulas
∀x [st(x) =⇒ Φ(x)] and ∃x [st(x) ∧ Φ(x)] respectively. More generally, if Φ is
a first order formula, Φst is the formula where all quantifications of the form ∀x
and ∃x are replaced with quantifications ∀stx and ∃stx respectively. The transfer
principle then takes the form:

3.2. If Φ(x1, . . . , xn) is a bounded formula whose free variables are among x1, . . . , xn,
then for all standard a1, . . . , an ∈ ◦0,

Φst(a1, . . . , an) ⇐⇒ Φ(a1, . . . , an).

Non-Standard analysis uses in an essential way non-standard integers. The fol-
lowing principle guarantees their existence:
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3.3 (Countable Saturation). If {An : n ∈ N} is a sequence of internal sets in ◦0
such that for all n ∈ N A1 ∩ A2 ∩ · · · ∩ An is non-empty, then there is an internal
element a such that a ∈ An for all n ∈ N.

Proposition 3.4. •N \ N is non-empty.

Proof. For finite subsets of 0 we have •{a1, . . . , an} = {•a1, . . . ,
•an}. Now N \

{1, . . . , n} is non-empty. Therefore for all n ∈ N,

An = •N \ {1, . . . , n} 6= ∅

and thus there is an a ∈
⋂
k Ak. Such an a is distinct from all k ∈ N. �

Countable saturation also implies:

Proposition 3.5. N is an external subset of •N.

Proof. Suppose N is internal. Then Bn = N \ {1, . . . , n} is non-empty and internal.
Thus there is an m ∈

⋂
k Bk, that is m ∈ N such that m > k for all k ∈ N which is

absurd. �

Corollary 3.6. Suppose A is an internal set such that N ⊆ A. Then there exists
M ∈ (•N \ N) ∩A.

Stated another way:

Corollary 3.7. If Φ(n) is a formula which holds for all standard integers n then
it holds for at least one unbounded integer.

Proposition 3.8. For any sequence {an}n∈N of elements of ◦0 such that an ∈ A,
there is an internal sequence {a′n}n∈•N which extends the original sequence, that is
a′n = an for all n ∈ N.

Proof. For each n ∈ N, let An be the set of sequences {bk}k∈•N which coincide with
{ak}k∈N in the interval {1, 2, . . . , n}. For all n ∈ N, An is non-empty since we can
exhibit an element b ∈ An as follows:

bk =

{
ak if k ≤ n
0 otherwise

The sequence is internal, since it is defined by an internal formula. By countable
saturation, there is an internal a that is an element of all the sets An. �

Definition 3.9. An r ∈ •R is infinitesimal if and only if for every n ∈ N, |r| ≤ n−1.

Proposition 3.10. There are infinitesimal real numbers.

x is infinitesimal is written as x ' 0.

Proof. For n ∈ N, let An = {r ∈ •R : 0 ≤ r ≤ 1/n}. An is non-empty and this by
countable saturation,

⋂
nAn is non-empty. �

Definition 3.11. A positive hyperreal r is infinite, written as x ' ∞, if and only
if n ∈ N, r ≥ n.

We use the notation r � 0 to indicate r is not infinitesimal and r � ∞ to
indicate r is not infinite.
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4. Non-standard view of computational derivability

A critical feature of a good model for tool-based protocol analysis is to focus
on a single setting for computations. The computational model for exponentiation
environments breaks this feature because of its use of the security parameter k. Our
approach to resolving this tension is to use non-standard analysis to narrow our
focus to a single k that can be used to express all the key properties. In particular,
k will be greater than any finite number.

In this section, we show how to simplify the computational model in this way.
First, we discuss the exponentiation environment we obtain when we consider an
admissible system at an infinite k. Then, we tackle the more complicated problem
of how to express the mechanisms around the exponentiation environment: families
of non-uniform circuits, probabilities, and negligible functions.

4.1. Infinite-index admissible systems.

Remark 4.1 (Notation). Given any standard sequence S = {Sk}k∈N , •S denotes
the family indexed by •N obtained by applying the transfer operator to S. The
family •S can be viewed as extension of S. By overloading of notation, we denote
each term of the family •S by Sk.

Now let S = {(Gj , gj , pj) : j ∈ N} be an admissible system of groups and
generators; •S is a family indexed on •N which extends S. By transfer, for each
k ∈ •N, Gk is a cyclic group, generated by gk, of prime order pk. In particular,
exponentiation is defined as a mapping Gk × Z/(pk)→ Gk. Now let k ' ∞. Then
pk ' ∞ due to growth requirements on the sequence {pk}k in Definition 2.1. The
internal characteristic of this field is pk ' ∞.

4.2. Non-standard mechanisms. In this section, we tackle the more complicated
problem of how to express the mechanisms around the exponentiation environment.
First, we discuss non-negligible functions.

4.2.1. Non-standard view of negligibility. First, we prove the following proposition.

Proposition 4.2. A necessary and sufficient condition a (standard) function f on
N be negligible is that for all standard n and k ' ∞, |•f(k)| ≤ k−n.

Proof. For necessity, suppose f is negligible and n is standard. By the definition of
negligible

∃st` ∀stk ≥ ` |•f(k)| ≤ k−n

is valid. Applying transfer, which is legitimate since it is applied to the innermost
quantifier

∃st` ∀k ≥ ` |•f(k)| ≤ k−n

In particular, if k ' ∞, |•f(k)| ≤ k−n as claimed.
The proof of sufficiency relies on a common technique involving overspill and

transfer. Suppose that for all k ' ∞ and all standard n, |•f(k)| ≤ k−n. In
particular,

∀` ' ∞ ∀k ≥ ` |•f(k)| ≥ k−n

and thus by overspill,
∃st` ∀k ≥ ` |•f(k)| ≥ k−n

By transfer
∃st` ∀stk ≥ ` |•f(k)| ≥ k−n
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which is the claim f is negligible. �

4.2.2. Non-standard view of probability. Let X = {Xk}k∈N be a sequence of finite
sets. A sequence of subsets Ak ⊆ Xk is negligible if and only if Prk(Ak) is negligible
as a function of k, where Prk is the uniform probability measure on Xk.

We will consider any hyperfinite set X as a space equipped with the probability
measure

(3) Pr(A) =
•cardA
•cardX

Proposition 4.3. Let {Xk}k∈N be a sequence of finite sets. A necessary and suffi-
cient condition a sequence {Ak}k of subsets be negligible is that for every standard
m and k ' ∞
(4) Pr(Ak) ≤ k−m

Proof. The proof of this follows the same lines as the proof of Proposition 4.2. �

Definition 4.4. Let K ' ∞. A hyperreal θ is K-negligible if and only if for all
standard m, |θ| ≤ K−m. A hyperreal θ is of order K if and only if there is a
standard m, such that |θ| ≤ K−m.

Remark 4.5. Any K-negligible number θ is infinitesimal, since θ ≤ K−1 and K−1

is already infinitesimal. The converse is false, since K−1 is infinitesimal but not
negligible. We introduce this stronger concept motivated by Proposition 4.3 and
the transfer principle to translate the property of negligible sequence into a “limit”
property of a single hyperfinite set.

Note that negligible is defined relative to a scale parameter K.
In the statement of Proposition 4.3 there is no relation assumed between the

cardinality of Xk and k. If we assume Xk has an exponential growth, that is for
some constants 0 < c ≤ C <∞ and all k,

c ≤ cardXk

2k
≤ C

then we can rewrite (4) as for all k ' ∞, Prk(Ak) is log •cardAk negligible.

4.2.3. Non-standard view of computational derivability. Last, we explore the idea
of infinite indices in polynomially bounded non-uniform circuit families. This is
done by applying the transfer operator to everything in sight. In keeping with our
notation, we use •C to denote the class of circuits in the universe ◦0, •| · | denotes
the size function.

If A = {Ak} ∈ PNC is a standard polynomially bounded non-uniform circuit
family, by transfer we simply think of Ak as being of size ≤ ρ(k) even when k ' ∞.
Using non-standard analysis, we can restate the condition with a single infinite
index.

In the following P denotes the set of primes.

Proposition 4.6. A derivation problem (ᾱ, β) is solvable if and only if for some
k ' ∞, there is a p ∈ •P such that 0 � p/2k � ∞ and an A ∈ •C such that for
some standard m, |A| ≤ km and

(5) Pr[x̄← (Z/(p)); v ← A(ᾱ(x̄)) : v = β(x̄)}]
is not k-negligible.
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Proof. If the derivation problem is solvable in the sense of Definition 2.6, then
overspill implies the stated condition. Conversely, if the stated condition holds,
there are k ' ∞, standard constants 0 < c ≤ C < ∞ such that c ≤ p/2k ≤ C, a
standard positive integer m and a circuit A such that ρ(A) ≤ km

(6) Pr[x̄← (Z/(p)); v ← A(ᾱ(x̄)) : v = β(x̄)}] ≥ k−m

Therefore the following formula with standard parameters ᾱ, β, c, C is valid in ◦0:

(7)

∀st`, ∃k ≥ `, ∃p ∈ •P, ∃A ∈ •PNC,

c ≤ p/2k ≤ C
and

Pr[x̄← (Z/(p)); v ← A(ᾱ(x̄)) : v = β(x̄)}] ≥ k−m

By transfer, we obtain the following completely standard formula.

(8)

∀` ∈ N, ∃k ≥ `, ∃p ∈ P, ∃A ∈ PNC,

c ≤ p/2k ≤ C
and

Pr[x̄← (Z/(p)); v ← A(ᾱ(x̄)) : v = β(x̄)}] ≥ k−m

This is precisely the condition for solvability. �

Note that since Proposition 4.6 refers only to a single infinite k, and since the
properties observed in subsection 4.1 apply to any infinite k, this allows us to view
the environment in the simple way we described at the beginning of this section:
as a single environment, with no overly specific properties.

5. Formalized environments

The main aim of this paper is to obtain a formalized environment in which we can
express Diffie-Hellman operations. We have thus far discussed only computational
environments of this kind. For the purposes of automated analysis, we must make
a Dolev-Yao style assumption on our environment, which would replace arbitrary
adversary behavior with a more restricted set of such behavior based on expected
derivations. Clearly, we will want to set our computation in Gk for an infinite k;
for simplicity we refer to such a group as G.

Now, we will certainly want to represent the field of exponents E = Z/(p). We
would represent each independently chosen random value in E as a variable, and
consider an adversary capable of exponentiation, field operations within E, and
group operations in G, based on knowing g as well as whatever input information
is available.

Certainly, formal derivability of β̄ from ᾱ would be a well-defined alternative to
the notion of derivation problem solvability. We seek a stronger justification of our
choice of formalization, namely, that formalizing transforms solvability into formal
derivability. The rest of the section deals with this aspect of formalization.

In Figure 1, we give a schematic of the models under discussion. If we were to
approach D only through B, we gain little evidence that our choice of formalization
is justified, but since B is fairly simple, we do get a good model to justify. We
then aim to justify this choice of formalization by attempting the same kind of
formalization on the regular computational model A, obtaining C, and only then
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generalizing to infinite index. The main result of this section is that this alternate
approach leads to the same notion of derivability.

5.1. Formalizing the computational model. Here, we must make a decision
about how to properly translate the notion of derivation by a family of circuits to a
formal one. We describe the formal derivation environment for each exponentiation
environment in an admissible system of groups and generators S = {(Gj , gj , pj) :
j ∈ N} as defined in §4.1. Essentially, a derivation is a rational expression on
exponents or exponents and bases. Rather than a polynomial bound on the circuit
family, we require that the rational expressions involved are of log-sublinear degree:
in other words, the expressions are of degree significantly less than p. A function
f : R −→ R is log-sublinear if and only if for every k ∈ N,

(9) lim
r→∞

f(r)

r(log r)−k
= 0.

For example, any function such that f(r) = O(r1−ε) for positive ε is log-sublinear.
This is a very conservative restriction, because the expressions can still grow expo-
nentially in k.

5.2. Base and Exponent Schema. For the Diffie-Hellman protocol, expressions
are of two kinds: a set U of “bases” and E of “exponents”. The derivation process
is given as closure rules for the sets U ⊆ U and E ⊆ E known to the adversary:

(1) If u, v ∈ U then u · v ∈ U .
(2) If R(x̄) ∈ Z(x1, . . . , xn) is a rational expression with integer coefficients and

t̄ = t1, . . . , tn ∈ E then R(t̄) ∈ E.
(3) If u ∈ U and t ∈ E, then ut ∈ U .

Base and exponent expressions are intended to model uniform schemas specific
to Diffie-Hellman. Formally, a base and exponent schema is a pair (U,E) where
U is a set of base variables E is a set of exponent variables. In the following
ū = 〈u1, . . . , um〉 is a sequence of base variables and x̄ = 〈x1, . . . , xn〉 is sequence
of exponent variables.

(1) The set of exponent expressions E consists of rational expressions R(x̄) ∈
Z(x̄) in exponent variables.

(2) The set of base expressions consists of monomials

F (ū, x̄) = u
R1(x̄)
1 u

R2(x̄)
2 · · ·uRn(x̄)

n

where ū are base variables and x̄ are exponent variables. We denote the set
of base expressions in the variables ū, x̄ by B〈ū, x̄〉.

The equality relation between base expressions is purely formal:

u
R1(x̄)
1 u

R2(x̄)
2 · · ·uRn(x̄)

n = u
S1(x̄)
1 u

S2(x̄)
2 · · ·uSn(x̄)

n

if and only if Ri(x̄) = Si(x̄). Later we will provide a semantics for equality which
justifies this definition.

A pure Diffie-Hellman term is either an exponent expression or a base expression.
Derivability is characterized by a set of closure rules for the set U of base expressions
and E of exponent expressions known to the adversary. The closure rules are as
follows:

(1) Suppose R1(x̄), . . . Rm(x̄) ∈ E. Then for any rational expression S(ȳ)

S(R1(x̄), . . . Rm(x̄)) ∈ E.
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(2) If u
Q1(x̄)
1 , u

Q1(x̄)
2 , . . . , u

Qm(x̄)
m ∈ B and R1(x̄), . . . Rm(x̄) ∈ E then

u
Q1(x̄)R1(x̄)
1 · · ·uQm(x)Rm(x̄)

m ∈ B

5.3. Derivability definitions and propositions. Recall that our formalized ver-
sion of a non-uniform family of circuits is a non-uniform family of rational expres-
sions.

Definition 5.1. Suppose R ∈ Z(x1, . . . , xn) and {Sk}k∈N is a sequence of elements
of Z(x1, . . . , xn). R ∼ {Sk}k if and only if there is a non-negligible function ε such
that for all k ∈ N,

(10) Prk {σ̄ ∈ (Z/(pk))n : R(σ̄) = Sk(σ̄)}︸ ︷︷ ︸
Ak

≥ ε(k)

Remark 5.2. In (10), the symbol Prk refers to the uniform probability measure
on (Z/(pk))n. Implicit in the defining condition for the sets Ak is that both the
RHS and the LHS of the equation within the braces are defined. In particular, the
denominators of both R(σ̄) and Sk(σ̄) must be non-zero in order for σ̄ to be an
element of Ak.

Remark 5.3. A necessary and sufficient condition that R ∼ {Sk}k is that there
exist an m ∈ N such that

(11) Prk {σ̄ ∈ (Z/(pk))n : R(σ̄) = Sk(σ̄)}︸ ︷︷ ︸
Ak

≥ (log pk)−m

for infinitely many k. This is a trivial rewrite of (10) using Remark 2.2.

Proposition 5.4. Suppose Rβ , Rα, Sk ∈ Z(x1, . . . , xn) and Rβ ∼ {Sk ◦ Rα}k.
If the degree of Sk is a log-sublinear function of pk (that is the degrees of the
numerator and denominator of Sk are log-sublinear in pk) as k →∞ then there is
an S ∈ Z(x1, . . . , xn) such that S ◦Rα = Rβ.

In other words, when such an {Sk} family exists for a given (α, β) exponent-only
derivability problem, Rβ can be derived from Rα.

Next we state the more general notion which includes both base and exponent
expressions and state the equivalent proposition.

Definition 5.5. Suppose ū ∈ Um, x̄ ∈ En, F (ū, x̄) ∈ B〈ū, x̄〉 and {Gk(ū, x̄)}k∈N
a sequence of elements of B〈ū, x̄〉. Then F ∼ {Gk}k if and only if there is a non-
negligible function ε such that for all k ∈ N,

(12) Prk{(τ̄ , σ̄) ∈ (Z/(pk))m × (Z/(pk))n : F (τ̄ , σ̄) = Gk(τ̄ , σ̄)} ≥ ε(k).

Proposition 5.6. Suppose Rβ , Rα, Sk ∈ B〈ū, x̄〉 and Rβ ∼ {Sk◦Rα}k. If the degree
of Sk is log-sublinear in k then there exists S ∈ B〈ū, x̄〉 such that Rβ = S ◦Rα.

Propositions 5.4 and 5.6 are proved in the next section.

5.4. Generalizing to infinite index. The formalized version of the computa-
tional model of derivability is stated in Definitions 5.1 and 5.5. These definitions
and the key results Propositions 5.4 and 5.6 are formulated in completely stan-
dard terms. We apply non-standard analysis techniques, in particular the transfer
principle to extend these definitions and propositions to infinite k. By applying
the overspill principle we can then isolate these statements to a single, infinite k.
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This produces almost the environment we expect; the one difference is that we get
a definition of solvable based on a non-negligible probability of success of being
solved by an allowable derivation, rather than being exactly solved by it. However,
we are able to prove that these amount to the same thing. In order to do this, we
require some preliminary concepts that restrict the size of algebraic varieties over
finite fields.

5.5. Varieties and Negligible Sets. Let F be an internal field. We consider
internal multivariate polynomials P ∈ F[x1, . . . , xn] where n ∈ •N. Elements
of F[x1, . . . , xn] are internal functions from the free internal Abelian semigroup
generated by x1, . . . , xn into the field F. We also use the notation F[x̄] to denote
the ring F[x1, . . . , xn]. An element P ∈ F[x1, . . . , xn] defines a function Fn −→ F
which by abuse of language we also denote by P . Note that in general distinct
polynomials can define the same function.

Now suppose F is a hyperfinite field and P ∈ F[x1, . . . , xn] is a polynomial of
degree m. The variety defined by P is the set E ⊆ Fn

(13) E = {(x1, . . . , xn) ∈ Fn : P (x1, . . . , xn) = 0}

If f is log-sublinear, then for R ' ∞ and standard hyperinteger k,

(14)
•f(R)

R(logR)−k
' 0.

An internal set E ⊆ X is negligible if and only if Pr(E) is negligible relative to
the scale parameter log •cardX. The key result we use is the following:

Proposition 5.7. Suppose E ⊆ Fn is an algebraic variety defined by a non-trivial
polynomial P such that

(15) degP ≤ •f(•card F)

where f is log-sublinear. Then E is negligible.

The result is proved in §7.

Remark 5.8. Note that the degree of P need not be standard. Stated contrapos-
itively, Proposition 5.7 states that if P defines a variety which is non-negligible,
then P is trivial.

Remark 5.9. Stated contrapositively, Proposition 5.7 states that two polynomials
whose degrees are not too large (in the sense of the inequality (15)) and which agree
on a non-negligible set are in fact identical.

6. Derivability in the Formal Model

Fix a derivability problem and let U , E be the sets of base and exponent ex-
pressions derivable by the adversary. In other words, U and E consist of base and
exponent expressions obtained by composing rational expressions with the Rα val-
ues. We use the notation and context of §4.1, in particular S = {(Gj , gj , pj) : j ∈ N}
is an admissible system of groups and generators and •S is the extension obtained
by transfer. The following remark is crucial in what follows:

Remark 6.1. Suppose F is standard and F ∈ •U (respectively F ∈ •E). Then
F ∈ U (respectively F ∈ E). This is immediate from the transfer principle.
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The previous remark is the basic idea behind our use of non-standard analysis.
We first consider exponent expressions:

Proof of Proposition 5.4. Since the set of {pj : j ∈ N} is unbounded, there is an
M ' ∞ such that pM ' ∞ and

(16) R(σ̄)− SM (σ̄) = 0

for σ̄ ∈ (•Z/(pM ))n on a non-negligible set AM . Let

(17) R(x̄) =
Rnum(x̄)

Rden(x̄)
, SM (x̄) =

Snum(x̄)

Sden(x̄)

so (16) can be regarded as the conjunction

(1) Rden(σ̄) and Sden(σ̄) are non-zero
(2) Rnum(σ̄)Sden(σ̄) = Snum(σ̄)Rden(σ̄)

The result now follows from Proposition 5.7 and the transfer principle. �

Proof of Proposition 5.6. There is an M ' ∞ such that pM ' ∞ and the set

{(τ̄ , σ̄) ∈ (•Z/(pM ))m × (•Z/(pM ))n : F (τ̄ , σ̄) = GM (τ̄ , σ̄)}

has non-negligible probability. Equivalently (τ̄ , σ̄) ∈ (•Z/(pM ))m × (•Z/(pM ))n

such that

(18) τ
R1(σ̄)
1 · · · τRm(σ̄)

m = τ
S1(σ̄)
1 · · · τSm(σ̄)

m

has non-negligible probability, where

GM (ū, x̄) = u
S1(x̄)
1 · · ·uSm(x̄)

m

Choose a generator ρ for GM . Then (18) can be expressed as

(19) ρα1R1(σ̄)+···+αmRm(σ̄) = ρα1S1(σ̄)+···+αmSm(σ̄)

which holds for (ᾱ, σ̄) ranging over a subset AM of (•Z/(pM ))m × (•Z/(pM ))n of
non-negligible probability. Therefore

α1(R1(σ̄)− S1(σ̄)) + · · ·+ αm(Rm(σ̄)− Sm(σ̄)) = 0.

for (ᾱ, σ̄) ∈ AM . Thus for all k, 1 ≤ k ≤ m, Rk(x̄) − Sk(x̄) = 0 which proves the
result. �

7. Negligibility of Algebraic Varieties

We now turn to the main technical result which limits the size of algebraic
varieties defined by polynomials of log-sublinear degree in the field size.

Proposition 7.1. Suppose E ⊆ Fn is an algebraic variety defined by a non-trivial
polynomial P . Then

(20) •cardE ≤ ndegP (•card F)n−1

Proof. Let m = degP . The proof is by induction on n. P is of the form

(21) P (x̄, y) = •
∑

k≤m
akPk(x̄)yk,

where Pk(x̄) ∈ F[x1, . . . , xn−1] is a polynomial of degree at most m. Now for each
ā ∈ Fn−1, one of the following holds:
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(1) The polynomial in one variable P (ā, y) is identically 0 or equivalently,

P0(ā) = P1(ā) = · · · = Pm(ā) = 0.

By the inductive hypothesis there are at most (n− 1)×m× (•card F)n−2

elements ā ∈ Fn−1 in this case and each one contributes •card F solutions
to P (ā, b) = 0

(2) There are possibly as many as (•card F)n−1 elements ā in this case, but
each one contributes at most m solutions to P (ā, b) = 0 as b ranges over F.

Altogether therefore, there are at most

(n− 1)m(•card F)n−1 + (•card F)n−1m = nm(•card F)n−1

elements in E. In case (1), therefore P (ā, b) = 0 has at most (•card F)n−1 × m
solutions as ā, b range over Fn−1, F respectively. �

Henceforth we assume without further mention that F is a hyperfinite field such
that •card F ' ∞. In this section, F will be instantiated with a field •Z/(p) with
p a infinite prime.

Proof of Proposition 5.7. Let m = degP . By Proposition 7.1 and the assumption
that •card F ' ∞,

Pr(E)(log •card F)k =
•cardE
•card Fn

(log •card F)k

≤ nm •card Fn−1

•card Fn
(log •card F)k

≤ n f(•card F)
•card F

(log •card F)k ' 0.

�

A partial internal function f is defined almost everywhere if and only if X\domX
is negligible.

Proposition 7.2. Suppose F is a hyperfinite field such that •card F ∈ •N \ N and
R(x̄) = P (x̄)/Q(x̄) where 0 6= Q(x̄) ∈ F[x] and degQ(x̄) ≤ Cf(•card F) with nf
log-sublinear. Then R is almost everywhere defined.

Proof. P is defined precisely when Q(x̄) 6= 0 which by Proposition 5.7 holds almost
everywhere. �

8. Restricting to the Diffie-Hellman algebra

The full Diffie-Hellman model thus far developed unfortunately falls short of
what we need for protocol analysis. As Dougherty and Guttman point out, the
notion that all exponents other than 0 have inverses cannot be simply expressed in
an equational theory [4]. Worse, any reasonable attempt at emulating this formal
model with an algebra would be problematic because the exponents would form a
ring structure, and unification, a key technique in automated exploratory protocol
analysis, is not known to be decidable for rings. Thus, we restrict our formal model
to a weaker one which does not capture exponent addition or group multiplication.
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Sorts
Sorts: base, expn

Operations

(·)(·) base× expn→ base Exponentiation
· · expn× expn→ akey Multiplication
(·)−1 expn→ expn Inverse

Constants
1 expn Identity

Equations
gxy ≡ (gx)y g : base, x, y : expn
xy ≡ yx x, y : expn
x(yz) ≡ (xy)z x, y, z : expn
g1 ≡ g g : base
1x ≡ x x : expn
x(x−1) ≡ 1 x : expn

Figure 2. Our restricted Diffie-Hellman algebra

8.1. Our Diffie-Hellman Algebra. Our Diffie-Hellman algebra is illustrated in
Figure 2. This algebra emulates a restricted version of our Diffie-Hellman model in
which addition of exponents and multiplication of bases are not included. Unifica-
tion in our algebra is efficiently computable and is unitary [5].

In this section, we present the similarly restricted version of our Diffie-Hellman
model, and justify our restriction in the following sense. In the restricted model, we
can formulate fewer formal solvability statements than in the full model. However,
all formal solvability statements in the restricted model are true exactly if they are
true in the full model.

The results of Proposition 8.2 and Corollary 8.3 are the main results supporting
this conclusion.

8.2. Monomials and Polynomials. Suppose r, n ∈ Z and A ∈Mr×n(Z). Let

(22) A =


α11 α12 · · · α1n

α21 α22 · · · α2n

. . . . . . . . . . . . . . . . . . . .
αr1 αr2 · · · αrn.

 =


A1

A2

...
Ar


MA(x̄) is the vector of monomials (displayed as a column vector for readability):

(23) MA(x̄) =


MA1(x̄)
MA2

(x̄)
...

MAr
(x̄)

 =


xα11

1 xα12
2 · · ·xα1n

n

xα21
1 xα22

2 · · ·xα2n
n

...
xαr1

1 xαr2
2 · · ·xαrn

n


As a special case, if ᾱ ∈M1×n(Z) (i.e. ᾱ is a row vector with n entries), then

Mᾱ(x̄) = xα1
1 xα2

2 · · ·xαn
n



17

We regard MA(x̄) as a mapping Fn −→ Fr. Since each component M` of MA is
almost everywhere defined and the number of components is standard, MA is almost
everywhere defined. The proof of the following is a straightforward computation:

Proposition 8.1. If C ∈Mr×n(Z) and D ∈Mr×n(Z) then

(24) MC(x̄) ·MD(x̄) = MC+D(x̄)

where the product is the coordinatewise product. If B ∈Ms×r(Z) and A ∈Mr×n(Z),
then

(25) MB

(
MA(x̄)

)
= MB·A(x̄).

In particular, if β̄ ∈M1×r(Z)

(26) M β̄·A(x̄) = Mβ̄MA(x̄) = Mβ1

A1
(x̄)Mβ2

A2
(x̄) · · ·Mβr

Ar
(x̄)

We now consider composition with polynomials. Suppose P (ȳ) ∈ F[y1, . . . , yr]
is a polynomial of degree m. Thus

(27) P (y1, . . . , yr) =
∑
|β̄|≤m

cβ̄y
β1

1 yβ2

2 · · · yβr
r =

∑
|β̄|≤m

cβ̄Mβ̄(ȳ)

If A is an r × n matrix as in (22), then by (26),

P
(
MA(x̄)

)
=
∑
|β̄|≤m

cβ̄Mβ̄(MA(x̄))

=
∑
β̄

cβ̄Mβ̄·A(x̄)

=
∑
γ̄

{ ∑
β̄·A=γ̄

cβ̄

}
Mγ̄(x̄).

Since the family Mγ̄(x̄) of monomials in the vector space F[x1, . . . , xn] is linearly
independent, we have shown:

Proposition 8.2. If P (ȳ) =
∑
β̄ cβ̄ ȳ

β̄ ∈ F[y1, . . . , yr] and A ∈ Mr×n(Z) is such
that

P (MA1
(x̄),MA2

(x̄), . . . ,MAr
(x̄)) = 0

then for every γ̄,

(28)
∑
β̄·A=γ̄

cβ̄ = 0.

An immediate corollary is the conclusion that polynomial identities between
monomials are essentially monomial identities. This result has the following signif-
icance: an adversary that can compute arbitrary polynomials on monomials has no
advantage over an adversary that is restricted to computing monomials.

Corollary 8.3. Suppose

(29) R(ȳ) =

∑
β̄ cβ̄Mβ̄(ȳ)∑
β̄ dβ̄Mβ̄(ȳ)

∈ F(y1, . . . , yr),

A ∈Mr×n(Z) and γ̄ ∈M1×n(Z) are such that

(30) R (MA1
(x̄),MA2

(x̄), . . . ,MAr
(x̄)) = Mγ̄(x̄)



18

Then there is a τ̄ ∈M1×r(Z) such that γ̄ = τ̄ ·A and for any such τ̄

(31) Mτ1
A1

(x̄)Mτ2
A2

(x̄) · · ·Mτr
Ar

(x̄) = Mτ̄ (MA(x̄)) = Mγ̄(x̄).

Proof. From (29) and (30) it follows that∑
β̄

dβ̄Mγ̄+β̄·A(x̄) = Mγ̄(x̄)
∑
β̄

dβ̄Mβ̄(MA(x̄))

=
∑
β̄

cβ̄Mβ̄(MA(x̄))

=
∑
β̄

cβ̄Mβ̄·A(x̄)

By Proposition 8.2, for every τ̄ ,

(32)
∑

γ̄+β̄·A=τ̄

dβ̄Mγ̄+β̄·A(x̄) =
∑
β̄·A=τ̄

cβ̄Mβ̄·A(x̄)

Let τ̄ be such that
∑
γ̄+β̄·A=τ̄ dβ̄ 6= 0. Such a τ̄ exists, for otherwise the rational

function R would be identically 0 which is impossible by (30). Choose some ρ̄ such
that γ̄ + ρ̄ ·A = τ̄ ; such an index exists for otherwise the sum

∑
γ̄+β̄·A=τ̄ dβ̄ would

be 0. If γ̄ + β̄ ·A = τ̄ , then

Mγ̄+ρ̄·A(x̄) = Mγ̄+β̄·A(x̄).

Similarly choose some κ̄ such that κ̄ ·A = τ . If β̄ ·A = τ̄

Mκ̄·A(x̄) = Mτ̄ (x̄) = Mβ̄·A(x̄)

Then from (32).

(33)

( ∑
γ̄+β̄·A=τ̄

dβ̄

)
Mγ̄+ρ̄·A(x̄) =

( ∑
β̄·A=τ̄

cβ̄

)
Mκ̄·A(x̄)

Thus

Mγ̄(x̄) =

∑
β̄·A=τ̄ cβ̄∑

γ̄+β̄·A=τ̄ dβ̄

Mκ̄·A(x̄)

Mρ̄·A(x̄)

=

∑
β̄·A=τ̄ cβ̄∑

γ̄+β̄·A=τ̄ dβ̄
Mκ1−ρ1
A1

(x̄)Mκ2−ρ2
A2

(x̄) · · ·Mκr−ρr
Ar

(x̄)

which is of the form (31). �

9. Conclusion

In this paper we justify a simple algebra for the modeling of Diffie-Hellman
protocols. The algebra represents multiplication of exponents and exponentiation
but does not represent addition of exponents or multiplication of bases. We justify
our model by linking it to a standard computational model, and show a link between
the concept of derivability in the computational model and in our model. The link
involves two transformations of the model: a Dolev-Yao-style formalization and a
generalization to hyperfinite parameters. We show that either order of these two
steps leads to the same notion of derivability.

We then consider the restriction to monomial derivations (that is, derivations
that act as monomials on exponents) and show a conservative extension result,
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namely, that the fuller model including multiplication of bases and addition of ex-
ponents is a conservative extension of our restricted model. This allows us to con-
clude that for problems that may be expressed in our restricted model, derivability
in the restricted model is equivalent to derivability in the unrestricted model.
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Asymptotic Results via Non-standard Analysis

Proposition .1. A necessary and sufficient condition a function f be non-negligible
is that there exist a a standard n and K ' ∞ such that |•f(K)| ≥ K−n.

Proof. For n ∈ N, then set In one direction apply overspill. In the other direction

∀stk ∃K ≥ k |•f(K)| ≥ K−n

is valid. By transfer
∀stk ∃stK ≥ k |•f(K)| ≥ K−n

is valid. However, if K is standard •f(K) = f(K). �


